8 research outputs found

    Measuring effective temperatures in out-of-equilibrium driven systems

    Full text link
    We introduce and solve a model of a thermometric measurement on a driven glassy system in a stationary state. We show that a thermometer with a sufficiently slow response measures a temperature higher than that of the environment, but that the measured temperature does not usually coincide with the effective temperature related to the violation of the Fluctuation-Dissipation Theorem.Comment: 8 pages, 8 figures, LaTeX, Springer Journal class (included

    Zero-th law in structural glasses: an example

    Full text link
    We investigate the validity of a zeroth thermodynamic law for non-equilibrium systems. In order to describe the thermodynamics of the glassy systems, it has been introduced an extra parameter, the effective temperature which generalizes the fluctuation-dissipation theorem (FDT) to off-equilibrium systems and supposedly describes thermal fluctuations around the aging state. In particular we analyze two coupled systems of harmonic oscillators with Monte Carlo dynamics. We study in detail two types of dynamics: sequential dynamics, where the coupling between the subsystems comes only from the Hamiltonian; and parallel dynamics where there is another source of coupling: the dynamics. We show how in the first case the effective temperatures of the two interacting subsystems are different asymptotically due to the smallness of the thermal conductivity in the aging regime. This explains why, in structural glasses, different interacting degrees of freedom can stay at different effective temperatures, and never thermalize.Comment: 10 pages. Contribution to the Proceedings of the ESF SPHINX meeting `Glassy behaviour of kinetically constrained models' (Barcelona, March 22-25, 2001). To appear in a special issue of J. Phys. Cond. Mat

    Fluctuation-Dissipation relations in Driven Granular Gases

    Full text link
    We study the dynamics of a 2d driven inelastic gas, by means of Direct Simulation Monte Carlo (DSMC) techniques, i.e. under the assumption of Molecular Chaos. Under the effect of a uniform stochastic driving in the form of a white noise plus a friction term, the gas is kept in a non-equilibrium Steady State characterized by fractal density correlations and non-Gaussian distributions of velocities; the mean squared velocity, that is the so-called {\em granular temperature}, is lower than the bath temperature. We observe that a modified form of the Kubo relation, which relates the autocorrelation and the linear response for the dynamics of a system {\em at equilibrium}, still holds for the off-equilibrium, though stationary, dynamics of the systems under investigation. Interestingly, the only needed modification to the equilibrium Kubo relation is the replacement of the equilibrium temperature with an effective temperature, which results equal to the global granular temperature. We present two independent numerical experiment, i.e. two different observables are studied: (a) the staggered density current, whose response to an impulsive shear is proportional to its autocorrelation in the unperturbed system and (b) the response of a tracer to a small constant force, switched on at time twt_w, which is proportional to the mean-square displacement in the unperturbed system. Both measures confirm the validity of Kubo's formula, provided that the granular temperature is used as the proportionality factor between response and autocorrelation, at least for not too large inelasticities.Comment: 11 pages, 7 figures, submitted for publicatio

    Aging dynamics of heterogeneous spin models

    Full text link
    We investigate numerically the dynamics of three different spin models in the aging regime. Each of these models is meant to be representative of a distinct class of aging behavior: coarsening systems, discontinuous spin glasses, and continuous spin glasses. In order to study dynamic heterogeneities induced by quenched disorder, we consider single-spin observables for a given disorder realization. In some simple cases we are able to provide analytical predictions for single-spin response and correlation functions. The results strongly depend upon the model considered. It turns out that, by comparing the slow evolution of a few different degrees of freedom, one can distinguish between different dynamic classes. As a conclusion we present the general properties which can be induced from our results, and discuss their relation with thermometric arguments.Comment: 39 pages, 36 figure

    Violation of the fluctuation-dissipation theorem in glassy systems: basic notions and the numerical evidence

    Full text link
    This review reports on the research done during the past years on violations of the fluctuation-dissipation theorem (FDT) in glassy systems. It is focused on the existence of a quasi-fluctuation-dissipation theorem (QFDT) in glassy systems and the currently supporting knowledge gained from numerical simulation studies. It covers a broad range of non-stationary aging and stationary driven systems such as structural-glasses, spin-glasses, coarsening systems, ferromagnetic models at criticality, trap models, models with entropy barriers, kinetically constrained models, sheared systems and granular media. The review is divided into four main parts: 1) An introductory section explaining basic notions related to the existence of the FDT in equilibrium and its possible extension to the glassy regime (QFDT), 2) A description of the basic analytical tools and results derived in the framework of some exactly solvable models, 3) A detailed report of the current evidence in favour of the QFDT and 4) A brief digression on the experimental evidence in its favour. This review is intended for inexpert readers who want to learn about the basic notions and concepts related to the existence of the QFDT as well as for the more expert readers who may be interested in more specific results.Comment: 120 pages, 37 figures. Topical review paper . Several typos and misprints corrected, new references included and others updated. to be published in J. Phys. A (Math. Gen.
    corecore